CD19(+) B Cells Confer Protection against Experimental Cerebral Malaria in Semi-Immune Rodent Model

نویسندگان

  • Lam Quoc Bao
  • Nguyen Tien Huy
  • Mihoko Kikuchi
  • Tetsuo Yanagi
  • Masachika Senba
  • Mohammed Nasir Shuaibu
  • Kiri Honma
  • Katsuyuki Yui
  • Kenji Hirayama
چکیده

In African endemic area, adults are less vulnerable to cerebral malaria than children probably because of acquired partial immunity or semi-immune status. Here, we developed an experimental cerebral malaria (ECM) model for semi-immune mice. C57BL/6 (B6) mice underwent one, two and three cycles of infection and radical treatment (1-cure, 2-cure and 3-cure, respectively) before being finally challenged with 10(4) Plasmodium berghei ANKA without treatment. Our results showed that 100% of naïve (0-cure), 67% of 1-cure, 37% of 2-cure and none of 3-cure mice succumbed to ECM within 10 days post challenge infection. In the protected 3-cure mice, significantly higher levels of plasma IL-10 and lower levels of IFN-γ than the others on day 7 post challenge infection were observed. Major increased lymphocyte subset of IL-10 positive cells in 3-cure mice was CD5(-)CD19(+) B cells. Passive transfer of splenic CD19(+) cells from 3-cure mice protected naïve mice from ECM. Additionally, aged 3-cure mice were also protected from ECM 12 and 20 months after the last challenge infection. In conclusion, mice became completely resistant to ECM after three exposures to malaria. CD19(+) B cells are determinants in protective mechanism of semi-immune mice against ECM possibly via modulatory IL-10 for pathogenic IFN-γ production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection against malaria in mice is induced by blood stage–arresting histamine-releasing factor (HRF)–deficient parasites

Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far ...

متن کامل

The effect of immunosuppression on the development of cerebral oedema in an experimental model of intracerebral haemorrhage: whole body and regional irradiation.

The oedema which forms around an intracerebral haemorrhage has a complex aetiology. The immune response may have a role in its formation. There is clinical and experimental evidence that circulating leucocytes and platelets may mediate oedema formation. Global depletion of circulating leucocytes and platelets by whole body irradiation in a rodent model of intracerebral haemorrhage was found to ...

متن کامل

Induction of antimalaria immunity by pyrimethamine prophylaxis during exposure to sporozoites is curtailed by parasite resistance.

Each year, infections with the protozoan parasite Plasmodium falciparum kill 1 million people, mostly children in Africa. Intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) reduces the incidence of malaria and aims to prevent mortality in infants, children, and pregnant women. There is contradictory evidence as to whether this strategy may generate additional protection...

متن کامل

Malaria Blood Stage Suppression of Liver Stage Immunity by Dendritic Cells

Malaria starts with Plasmodium sporozoites infection of the host's liver, where development into blood stage parasites occurs. It is not clear why natural infections do not induce protection against the initial liver stage and generate low CD8+ T cell responses. Using a rodent malaria model, we show that Plasmodium blood stage infection suppresses CD8+ T cell immune responses that were induced ...

متن کامل

The High Blood Pressure-Malaria Protection Hypothesis.

RATIONALE A recently proposed hypothesis states that malaria may contribute to hypertension in endemic areas,1 but the role of angiotensin II (Ang II), a major regulator of blood pressure, was not considered. Elevated levels of Ang II may confer protection against malaria morbidity and mortality, providing an alternative explanation for hypertension in malaria endemic areas. OBJECTIVE To disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013